Brownian motion and Stochastic Calculus
Dylan Possamai

Assignment 10—solutions

Exercise 1

We fix a standard one-dimensional (F,P)-Brownian motion.

1) Show that for any C%? function f : [0,+00) x R — R, such that there exists some continuous function C' :
[0, +00) — [0, +00) with
0. f(t,2)] < C(t)e“ Dl (t,2) € [0, +00) x R, (0.1)

the process (f(t, Bt))t>0 will be an (F,P)-martingale if and only if

&f@w%%%ﬁj@ﬂﬁza(u@eﬂl+m)xR. 0.2)

2) in this question, we are looking for functions f of the form
flt,z) = ZZathixj7 (t,x) € [0,400) X R,

i=0 j=0

for some integer n and real numbers (a; ;) j)e{o,...,n}2- Show that the process f(t, B;) is an (IF,P)-martingale if
and only if the (ao ;) eqo,....n} are arbitrarily fixed and

_ (G +2i)!
a;j = (-1) Tj'

ai7j:0,j+2i>n,

aO,j+2i7 .7 + 24 S n,

1) Indeed, by Itd’s formula the Itd process (f(t, B;))i>o is an (FBF P)-local martingale if and only if its
drift is equal to 0 with P-probability 1, that is

1
atf(ta Bt) + iaizf(t7Bt) = Oa t Z Oa P-a.s.

Since the support of the P-distribution of B; is R, we deduce the desired condition. Next, since inequality
(0.1) holds, the volatility of (f(t, B;));>o is automatically in H?(R,F5¥ P), which shows the martingale
property.

2) In this case, inequality (0.1) is obviously satisfied, and direct computations prove that (0.2) holds if
and only if a1 9o =a1; =0 when n =1 (the case n =0 is trivial), and when n > 2

G+20+1)
20 + 1)
an7j+2:O, j e {0,...,’[1—2},
Ai41,n—1 :O, 1€ {0,...,717 1}7
Ait1.n =0,1€ {0,...,%—1}.

Qiy1,5 = — Aj,542, xS {07...,n—1}, j S {O,...7’I’L—2},

yeery

It can then easily be checked that this equivalent to having the (ao;);cqo,..,n} arbitrarily fixed and
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a;; =0, 7+2i>n,

ao,j+2i, .7 + 2 S n,



Exercise 2

Consider, for any = € R%, the SDE
dX? = a(X]P)dt + b(X7)dW,, X§ = «,

where W is a R™-valued Brownian motion, a : R — R% and b : R — R4*™ are measurable and locally bounded. We
fix a non-empty, bounded open subset U of R? and assume that for any = € U, we have with 77 := inf{s > 0: X2 ¢ U},
that T; is P-integrable.

Moreover, consider the boundary problem
Lu(z) + c¢(x)u(r) = —f(z), for x € U, u(z) = g(z), for x € OU,

where f € Cy(U), g € Cp(0U), ¢ < 0 is a uniformly bounded function on R¢, and L is defined by
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Show that if u € C2(U) N C(U) is a solution of the above boundary problem and (X{);> is a solution of the SDE for
some z € U, then

u(z) = EF {g(X%g)exp (/Om c(Xg)dsﬂ HEPUOW F(XT)exp </0 c(X,‘f’)dr)ds}

For m € N* large enough so that % < d(z,U¢), we define
T :=inf {s > 0:d(X?,U°) <1/m},

and construct u, € C*(R%,R) such that u = u,, on {z € U : d(z,U¢) > 1/m}. We apply Itd’s formula to

U (XT) exp (fg ¢(X?)ds), take then the expectation and use that the local martingale is a true martingale
as b is locally bounded and u € C? to obtain that

EP {um(xgw) exp ( /0 i c(X:)dsﬂ — () = EF { /0 o (Ltm (X7) + (X7 Y (X)) exp ( /O | c(X:)dr) ds}

Now, as u,, = u on {z eU:d(z,U° > %}, by definition of T and as u is the solution of the boundary
problem, we obtain that

u(z) = EP [U(X;AT%) exp ( /0 e C(X;;v)dsﬂ + EP[ /O e F(XT)exp < /O ) C(X:)dr) ds} .

Since 17 1 T < oo, we can let t — oo and then m — oo to conclude, by the dominated convergence
theorem, that
5 T s
u(z) = EF {g(X%g)exp (/ c(Xf)ds)} + EF [/ F(XZ)exp </ c(Xf)dr) ds}
0 0 0

Exercise 3

Let (B)i>o0 be a standard one-dimensional Brownian motion.
1) Show that the SDE
¢ 1t
Xt:x—f—/ \/1+X§dB5+§/ X,ds, (0.3)
0 0

admits a unique strong solution for all x € R.



2) Fix z € R and (B4, 7¢)t>0 two independent one-dimensional Brownian motions. Show that

t
Y; := exp(B) (x —|—/ exp(—ﬁs)d%>7 t>0,
0
is well-defined and solves (0.3) for some well-chosen Brownian motion B. Deduce that for a := argsinh(x),
(Y, t > 0) "2 (sinh(a + By), t > 0).

3) We now go to a slightly more general setting.
a) Show that if the map ¢ : R — R is a C? diffeomorphism from R, then ®; := ¢(B;) satisfies

B, = p(0) + /O o(®.)dB, + /0 b(®,)ds, (0.4)

where )
() := (¢ 0" V)(), b(x) := 5(@" o ") ().

b) Conversely, if 0,b : R — R are Lipschitz functions with appropriate growth, we know that the SDE (0.4)
admits a unique strong solution. Under which conditions on (o,b) can we solve the system

¢'(y) = ale(y), ¥"(y) = 2b(2(y)),
so that the solution of (0.4) is ®; = ¢(B:)?

1) The drift and volatility are clearly Lipschitz-continuous with linear growth, hence the standard

Cauchy—Lipschitz theorem applies.
t t
EP[/ e_wsds} :/ e**ds < +o0,
0 0

ensuring that Y is well-defined. Next, applying It6’s formula to Y, we get

¢ 1 1 Y, 1
Y, = - B - =Y, 1+Y? i .
dy; <x+/0 exp( ﬁs)d%)e (dﬁt+2dt) +dy = SYidi /14 t( 1+Y3d’8t+ 1+Y;2d%>

Now, let B := [ (

2) We have for any ¢t > 0

\/%dﬁt + ﬁd%). ‘We have

ensuring by Lévy’s characterisation that B is a Brownian motion.

Next, it is direct to check that X; := (sinh(a + B;) is the strong solution to the SDE, which gives the
desired result by uniqueness in law.

3)a) It is a simple application of Itd’s formula. Indeed, we have

t 1 t
b, = P, —|—/ ¢©'(Bs)dB, + 5/ 0" (By)ds,
0 0

and it suffices to notice that B; = (=1 (®;), t > 0.

b) If we can find ¢ as a C? diffeomorphism satisfying the two ODEs, then clearly ® = ¢(B). Now, it is
necessary for this that

¢’ (y)o' (e(y)) = a(e(y))o’ (v(y) = 2b(¢(y)).
Hence, ¢ being a diffeomorphism on R, this means that we must have

oo’ = 2b.

Under this assumption, and if for instance oo’ is Lipschitz-continuous, and ¢ has a fixed sign, the result
will hold.



